572 research outputs found

    Panchromatic spectral energy distributions of Herschel sources

    Get PDF
    Combining far-infrared Herschel photometry from the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time programs with ancillary datasets in the GOODS-N, GOODS-S, and COSMOS fields, it is possible to sample the 8–500 Όm spectral energy distributions (SEDs) of galaxies with at least 7–10 bands. Extending to the UV, optical, and near-infrared, the number of bands increases up to 43. We reproduce the distribution of galaxies in a carefully selected restframe ten colors space, based on this rich data-set, using a superposition of multivariate Gaussian modes. We use this model to classify galaxies and build median SEDs of each class, which are then fitted with a modified version of the magphys code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an active galactic nucleus (AGN). The color distribution of galaxies in each of the considered fields can be well described with the combination of 6–9 classes, spanning a large range of far- to near-infrared luminosity ratios, as well as different strength of the AGN contribution to bolometric luminosities. The defined Gaussian grouping is used to identify rare or odd sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z ~ 1 Ly-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eightother popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10–20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of SED templates. Finally, the library is used to classify 24 ÎŒm detected sources in PEP GOODS fields on the basis of AGN content, L(60)/L(100) color and L(160)/L(1.6) luminosity ratio. AGN appear to be distributed in the stellar mass (M_∗) vs. star formation rate (SFR) space along with all other galaxies, regardless of the amount of infrared luminosity they are powering, with the tendency to lie on the high SFR side of the “main sequence”. The incidence of warmer star-forming sources grows for objects with higher specific star formation rates (sSFR), and they tend to populate the “off-sequence” region of the M_∗ − SFR − z space

    HerMES: Lyman Break Galaxies Individually Detected at 0.7 ≀ z ≀ 2.0 in GOODS-N with Herschel/SPIRE

    Get PDF
    As part of the Herschel Multi-tiered Extragalactic Survey we have investigated the rest-frame far-infrared (FIR) properties of a sample of more than 4800 Lyman break galaxies (LBGs) in the Great Observatories Origins Deep Survey North field. Most LBGs are not detected individually, but we do detect a sub-sample of 12 objects at 0.7 2.5. The UV-to-FIR spectral energy distributions of the objects detected in the rest-frame FIR are investigated using the code CIGALE to estimate physical parameters. We find that LBGs detected by SPIRE are high-mass, luminous infrared galaxies. It appears that LBGs are located in a triangle-shaped region in the A_(FUV) versus log L_(FUV) = 0 diagram limited by A_(FUV) = 0 at the bottom and by a diagonal following the temporal evolution of the most massive galaxies from the bottom right to the top left of the diagram. This upper envelop can be used as upper limits for the UV dust attenuation as a function of L_(FUV). The limits of this region are well explained using a closed-box model, where the chemical evolution of galaxies produces metals, which in turn lead to higher dust attenuation when the galaxies age

    The evolution of the dust and gas content in galaxies

    Get PDF
    We use deep Herschel observations taken with both PACS and SPIRE imaging cameras to estimate the dust mass of a sample of galaxies extracted from the GOODS-S, GOODS-N and the COSMOS fields. We divide the redshift–stellar mass (Mstar)–star formation rate (SFR) parameter space into small bins and investigate average properties over this grid. In the first part of the work we investigate the scaling relations between dust mass, stellar mass and SFR out to z = 2.5. No clear evolution of the dust mass with redshift is observed at a given SFR and stellar mass. We find a tight correlation between the SFR and the dust mass, which, under reasonable assumptions, is likely a consequence of the Schmidt-Kennicutt (S-K) relation. The previously observed correlation between the stellar content and the dust content flattens or sometimes disappears when considering galaxies with the same SFR. Our finding suggests that most of the correlation between dust mass and stellar mass obtained by previous studies is likely a consequence of the correlation between the dust mass and the SFR combined with the main sequence, i.e., the tight relation observed between the stellar mass and the SFR and followed by the majority of star-forming galaxies. We then investigate the gas content as inferred from dust mass measurements. We convert the dust mass into gas mass by assuming that the dust-to-gas ratio scales linearly with the gas metallicity (as supported by many observations). For normal star-forming galaxies (on the main sequence) the inferred relation between the SFR and the gas mass (integrated S-K relation) broadly agrees with the results of previous studies based on CO measurements, despite the completely different approaches. We observe that all galaxies in the sample follow, within uncertainties, the same S-K relation. However, when investigated in redshift intervals, the S-K relation shows a moderate, but significant redshift evolution. The bulk of the galaxy population at z ~ 2 converts gas into stars with an efficiency (star formation efficiency, SFE = SFR/M_gas, equal to the inverse of the depletion time) about 5 times higher than at z ~ 0. However, it is not clear what fraction of such variation of the SFE is due to an intrinsic redshift evolution and what fraction is simply a consequence of high-z galaxies having, on average, higher SFR, combined with the super-linear slope of the S-K relation (while other studies find a linear slope). We confirm that the gas fraction (f_gas = M_gas/(M_gas + M_star)) decreases with stellar mass and increases with the SFR. We observe no evolution with redshift once M_star and SFR are fixed. We explain these trends by introducing a universal relation between gas fraction, stellar mass and SFR that does not evolve with redshift, at least out to z ~ 2.5. Galaxies move across this relation as their gas content evolves across the cosmic epochs. We use the 3D fundamental f_gas–M_star–SFR relation, along with the evolution of the main sequence with redshift, to estimate the evolution of the gas fraction in the average population of galaxies as a function of redshift and as a function of stellar mass: we find that M_star ≳ 10^11 M_⊙ galaxies show the strongest evolution at z ≳ 1.3 and a flatter trend at lower redshift, while f_gas decreases more regularly over the entire redshift range probed in Mstar â‰Č 10^11 M_⊙ galaxies, in agreement with a downsizing scenario

    Crime scene and body alterations caused by arthropods: implications in death investigation

    Get PDF
    The activity of arthropods on corpses has been largely investigated, since they can produce information to reconstruct the peri-mortem events. However, the feeding/movement activity of insects around the crime scene, among the clothes and on the body, can also cause some alterations that can lead to wrong reconstruction and misinterpretations. This article summarises all the post-mortem arthropods artefacts related to the scene (i.e. fly artefacts and floor stripes) and the body (i.e. skin and other soft tissue alterations, bone alterations and hair alterations) that can mislead the forensic pathologist, discussing macroscopic and microscopic findings derived from forensic casework and from experimental laboratory studies, in order to provide a useful instrument to avoid misinterpretations and evaluation errors. Finally, some procedural notes for the documentation and the interpretation of findings are proposed

    Renin-Angiotensin System and Renal Allograft Long-Term Outcome: A Review

    Get PDF
    Recent developments in immunosuppressive therapy have reduced the loss of allografts from acute rejection, with a significant improvement in the one-year allograft survival. However, the introduction of more potent and selective new drug, had no effect on the development of chronic allograft dysfunction and the long-term outcome remains unchanged. Several and repeated different types of allograft insults such as delayed graft function, rejection episodes, drug nephrotoxicity, hypertension, dislipidemia determines a progressive damage with graft failure within a decade. There is no established maintenance immunosuppressive therapy that decreases chronic allograft dysfunction. The renin-angiotensin system is an important mediator in the pathogenesis of chronic progressive kidney diseases. Although the pathogenesis of chronic allograft nephropathy (CAN) is poorly understood, a reduced nephron function with hemodynamic changes associated with a cascade of inflammatory mediators, result in a chronic inflammatory process, progressive fibrosis and tissue remodeling. Recent evidence has shown beneficial effects of renin-angiotensin system blockade in the posttransplant with a decrease of blood pressure, proteinuria and inflammatory process

    Hydrogen peroxide is a neuronal alarmin that triggers specific RNAs, local translation of Annexin A2, and cytoskeletal remodeling in Schwann cells

    Get PDF
    Schwann cells are key players in neuro-regeneration: They sense "alarm" signals released by degenerating nerve terminals and differentiate toward a proregenerative phenotype, with phagocytosis of nerve debris and nerve guidance. At the murine neuromuscular junction, hydrogen peroxide (H2O2) is a key signal of Schwann cells' activation in response to a variety of nerve injuries. Here we report that Schwann cells exposed to low doses of H2O2 rewire the expression of several RNAs at both transcriptional and translational levels. Among the genes positively regulated at both levels, we identified an enriched cluster involved in cytoskeleton remodeling and cell migration, with the Annexin (Anxa) proteins being the most represented family. We show that both Annexin A2 (Anxa2) transcript and protein accumulate at the tips of long pseudopods that Schwann cells extend upon H2O2 exposure. Interestingly, Schwann cells reply to this signal and to nerve injury by locally translating Anxa2 in pseudopods, and undergo an extensive cytoskeleton remodeling. Our results show that, similarly to neurons, Schwann cells take advantage of local protein synthesis to change shape and move toward damaged axonal terminals to facilitate axonal regeneration

    Herschel observations of a z ∌ 2 stellar mass selected galaxy sample drawn from the GOODS NICMOS Survey

    Get PDF
    We present a study of the far-infrared (IR) properties of a stellar mass selected sample of 1.5 9.5 drawn from the Great Observatories Origins Deep Survey (GOODS) Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Survey (GNS), the deepest H-band Hubble Space Telescope survey of its type prior to the installation of Wide Field Camera 3 (WFC3). We use far-IR and submm data from the Photoconductor Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging Receiver (SPIRE) instruments on-board Herschel, taken from the PACS Evolutionary Probe (PEP) and Herschel Multi-Tiered Extragalactic Survey (HerMES) key projects, respectively. We find a total of 22 GNS galaxies, with median log (M_*/M_⊙) = 10.8 and z = 2.0, associated with 250 Όm sources detected with signal-to-noise ratio (SNR) > 3. We derive mean total IR luminosity log LIR(L_⊙) = 12.36 ± 0.05 and corresponding star formation rate (SFR)_(IR + UV) = (280 ± 40) M_⊙ yr^(−1) for these objects, and find them to have mean dust temperature T_dust ≈ 35 K. We find that the SFR derived from the far-IR photometry combined with ultraviolet (UV)-based estimates of unobscured SFR for these galaxies is on average more than a factor of 2 higher than the SFR derived from extinction-corrected UV emission alone, although we note that the IR-based estimate is subject to substantial Malmquist bias. To mitigate the effect of this bias and extend our study to fainter fluxes, we perform a stacking analysis to measure the mean SFR in bins of stellar mass. We obtain detections at the 2–4σ level at SPIRE wavelengths for samples with log (M_*/M_⊙) > 10. In contrast to the Herschel detected GNS galaxies, we find that estimates of SFR_(IR + UV) for the stacked samples are comparable to those derived from extinction-corrected UV emission, although the uncertainties are large. We find evidence for an increasing fraction of dust obscured star formation with stellar mass, finding SFR_(IR)/SFR_(UV) ∝ M^(0.7±0.2)_*, which is likely a consequence of the mass–metallicity relation

    HerMES: Current Cosmic Infrared Background Estimates Can Be Explained by Known Galaxies and Their Faint Companions at z < 4

    Get PDF
    We report contributions to cosmic infrared background (CIB) intensities originating from known galaxies and their faint companions at submillimeter wavelengths. Using the publicly available UltraVISTA catalog and maps at 250, 350, and 500 ÎŒm from the Herschel Multi-tiered Extragalactic Survey, we perform a novel measurement that exploits the fact that uncataloged sources may bias stacked flux densities—particularly if the resolution of the image is poor—and intentionally smooth the images before stacking and summing intensities. By smoothing the maps we are capturing the contribution of faint (undetected in K_S ~ 23.4) sources that are physically associated, or correlated, with the detected sources. We find that the cumulative CIB increases with increased smoothing, reaching 9.82 ± 0.78, 5.77 ± 0.43 and 2.32 ± 0.19 nWm^(-2) sr^(-1) at 250, 350, and 500 ÎŒm at 300 arscec FWHM. This corresponds to a fraction of the fiducial CIB of 0.94 ± 0.23, 1.07 ± 0.31, and 0.97 ± 0.26 at 250, 350, and 500 ÎŒm, where the uncertainties are dominated by those of the absolute CIB. We then propose, with a simple model combining parametric descriptions for stacked flux densities and stellar mass functions, that emission from galaxies with log(M/M⊙) > 8.5 can account for most of the measured total intensities and argue against contributions from extended, diffuse emission. Finally, we discuss prospects for future survey instruments to improve the estimates of the absolute CIB levels, and observe any potentially remaining emission at z > 4

    HerMES: deep number counts at 250 ÎŒm, 350 ÎŒm and 500 ÎŒm in the COSMOS and GOODS-N fields and the build-up of the cosmic infrared background

    Get PDF
    Aims. The Spectral and Photometric Imaging REceiver (SPIRE) onboard the Herschel space telescope has provided confusion limited maps of deep fields at 250 ÎŒm, 350 ÎŒm, and 500 ÎŒm, as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). Unfortunately, due to confusion, only a small fraction of the cosmic infrared background (CIB) can be resolved into individually-detected sources. Our goal is to produce deep galaxy number counts and redshift distributions below the confusion limit at SPIRE wavelengths (~20 mJy), which we then use to place strong constraints on the origins of the cosmic infrared background and on models of galaxy evolution. Methods. We individually extracted the bright SPIRE sources (>20 mJy) in the COSMOS field with a method using the positions, the flux densities, and the redshifts of the 24 ÎŒm sources as a prior, and derived the number counts and redshift distributions of the bright SPIRE sources. For fainter SPIRE sources (<20 mJy), we reconstructed the number counts and the redshift distribution below the confusion limit using the deep 24 ÎŒm catalogs associated with photometric redshift and information provided by the stacking of these sources into the deep SPIRE maps of the GOODS-N and COSMOS fields. Finally, by integrating all these counts, we studied the contribution of the galaxies to the CIB as a function of their flux density and redshift. Results. Through stacking, we managed to reconstruct the source counts per redshift slice down to ~2 mJy in the three SPIRE bands, which lies about a factor 10 below the 5σ confusion limit. Our measurements place tight constraints on source population models. None of the pre-existing models are able to reproduce our results at better than 3-σ. Finally, we extrapolate our counts to zero flux density in order to derive an estimate of the total contribution of galaxies to the CIB, finding 10.1_(-2.3)^(+2.6) nW m^(-2) sr^(-1), 6.5_(-1.6)^(+1.7) nW m^(-2) sr^(-1), and 2.8_(-0.8)^(+0.9) nW m^(-2) sr^(-1) at 250 ÎŒm, 350 ÎŒm, and 500 ÎŒm, respectively. These values agree well with FIRAS absolute measurements, suggesting our number counts and their extrapolation are sufficient to explain the CIB. We find that half of the CIB is emitted at z = 1.04, 1.20, and 1.25, respectively. Finally, combining our results with other works, we estimate the energy budget contained in the CIB between 8 ÎŒm and 1000 ÎŒm: 26_(-3)^(+7) nW m^(-2) sr^(-1)
    • 

    corecore